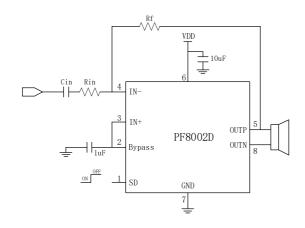


特性

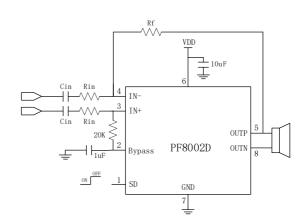
- 输出功率:
 - -1.6W (VDD=5.0V, RL =8 Ω , THD+N=10%) -2.5W (VDD=5.0V, RL =4 Ω , THD+N=10%)
- 工作电压: 2.5V to 5.5V
- 增益可由外挂电阻调整
- 內置降低上电瞬间启动/关闭产生pop声电路
- 过热保护功能

应用

- MP3
- 网络摄像头
- 儿童玩具游戏机
- 各类语音播报设备

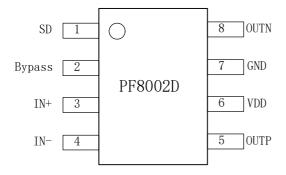

描述

PF8002D是一款单通道AB类音频功率放大器。在 5.0V 电源供电, THD+N=10%, 4欧姆负载上可以输出 2.5W 的功率。


PF8002D产品应用电路简单,仅需极少数的外围器件,就能提供高品质低失真的输出。低待机电流小于0.5uA。

PF8002D具有关断功能,极大的延长系统的待机时间。过热保护功能增强系统的可靠性。POP声抑制功能改善了系统的听觉感受,同时简化系统调试。

单端应用电路图



差分应用电路图

引脚排列

管脚描述

管脚	符号	I/O	描述
1	SD	I	系统关断控制,默认高电平(高电平关机,低电平工作)
2	Bypass	I	参考电压
3	IN+	I	音频正输入端
4	IN-	I	音频负输入端
5	OUTP	0	音频正输出端口
6	VDD	Р	电源
7	GND		地
8	OUTN	0	音频负输出端口

订货信息

料号	封装	表面印字	包装
PF8002D	SOP8	PF8002D XXXXXXX	4000颗/盘

绝对最大额定值

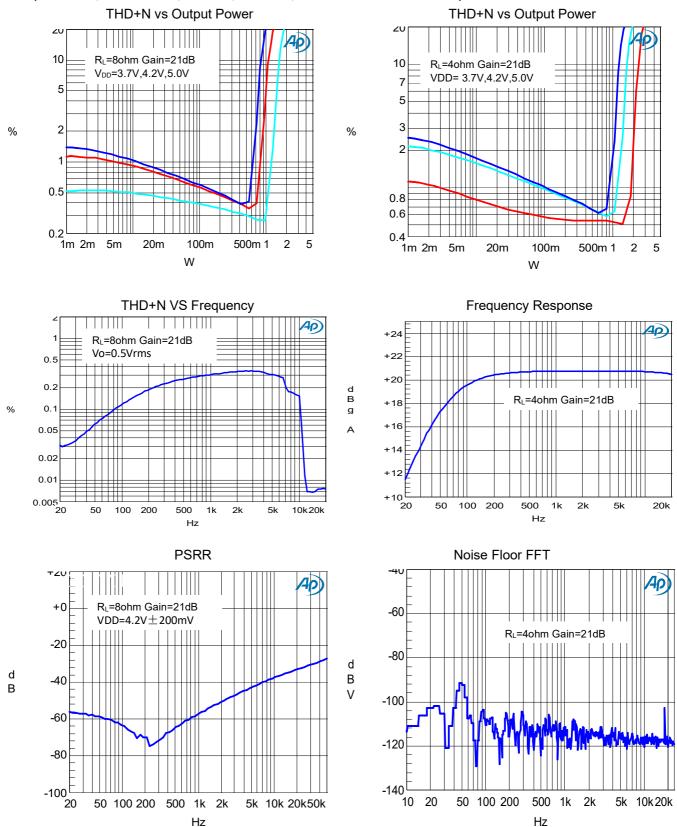
V_{DD}	供电电压	-0.3V to 6V
VI	输入电压	-0.3V to V _{DD} +0.3V
T _A	工作温度	-40°C to 85°C
T_J	结温	-40°C to 125°C
T _{STG}	储存温度	-65°C to 150°C
T _{SLD}	焊接温度	300°C, 5sec

注: 绝对最大额定值是指设备的寿命受到损害的值,在绝对最大额定条件下会引起芯片的永久性损坏。

推荐额定值

			MIN	MAX	UNIT
V_{DD}	供电电压	VDD	2.5	5.5	V
V _{IH}	SD高电平	V _{DD} =5.0V	2		V
V _{IL}	SD低电平	V _{DD} =5.0V		0.6	V
RL _{MIN}	最小负载	V _{DD} =5.0V	4		Ω

电性参数


(VDD =5V, Gain=20dB, R_L =8 Ω , T =25°C, unless otherwise noted.)

Symbol	Parameter	Test Conditions			TYP	MAX	UNIT
			V _{DD} =5.0V		1.6		W
		THD+N=10%,f=1KHZ,R _L =8Ω	V _{DD} =4.2V		1.1		
			V _{DD} =3.7V		0.85		
		THD+N=1%, f=1KHZ,R _L =8Ω	V _{DD} =5.0V		1.2		
			V _{DD} =4.2V		0.82		W
D-	*A.U. *A. **		V _{DD} =3.7V		0.63		
Po	输出功率		V _{DD} =5.0V		2.5		W
		THD+N=10%,f=1KHZ,R _L =4Ω	V _{DD} =4.2V		1.6		
			V _{DD} =3.7V		1.3		
		THD+N=1%, f=1KHZ,R _L =4Ω	V _{DD} =5.0V		1.8		W
			V _{DD} =4.2V		1.2		
			V _{DD} =3.7V		0.9		
TUD.N	总谐波失真+噪声	V_{DD} =5.0V, P_{O} =1.0W, R_{L} =8 Ω	6 41711		0.3		%
THD+N		V_{DD} =3.7V, P_{O} =0.5W, R_{L} =8 Ω	f=1KHz		0.4		
Gv	增益	R _{in} =27K, R _f =150K V _{DD} =3.7			21		dB
PSRR	电源纹波抑制比	VDD=4.2V ±200mVp-p	f=1KHz		56		dB
SNR	信噪比	V _{DD} =5.0V,Vorms=1V, G _V =21dB f=1Kl			89		dB
	残余噪声	\/ O\/ + f +ii -	A-weighting		35		
Vn		残余噪声	V_{DD} =5.0V,Input floating with C_{in} =0.1 μ F	No		53	
		Ош О.Трі	A-weighting		33		
Dyn	动态范围	V _{DD} =5.0V, THD=1%	f=1KHz		98		dB
	静态电流	V _{DD} =5.0V	V _{SD} =0.3V		6		mA
ΙQ		V _{DD} =4.2V	No Load		5		
		V _{DD} =3.7V	No Load		4		
I _{SD}	关断电流	V _{DD} =2.0V to 5.0V V _{SD} =3.3V			0.5		μΑ
Vos	失调电压	V _{DD} =5V, AC_GND			5		mV
Tst	启动时间	C _{Byp} =1.0uF			90		mS
OTP	温度保护	Junction Temperature,	\/ -5.0\/	-	175		°C
ОТН	迟滞温度 No Load		V _{DD} =5.0V		30		

典型特征曲线

(VDD =5V, Gain=21dB, R_L =8 Ω , T =25°C, unless otherwise noted.)

应用信息

输入电阻(Ri)

PF8002D的增益由音量调节控制的输入电阻(RI)和反馈电阻RF)控制。

增益计算如下:

Av = 2 X
$$\frac{Rf}{RI}$$
 $\left(\frac{V}{V}\right)$

其中,输入电阻RI为外部的输入电阻,Rf为外部反馈 电阻。

输入电容 (Ci)

输入电容与输入电阻构成一个高通滤波器,其截至频率可由下试得出:

$$f_c = \frac{1}{(2\pi RiCi)}$$

Ci的值不仅会影响到电路的低频响应,而且也会影响 电路启动和关断时所产生的POP声,输入电容越大, 则到达其稳定工作点所需的电荷越多,在同等条件下, 小的输入电容所产生的POP声比较小。

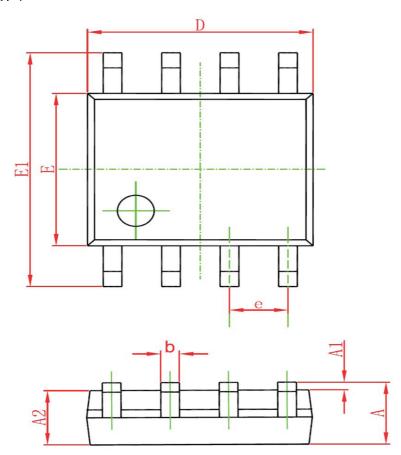
偏置电容CBYP

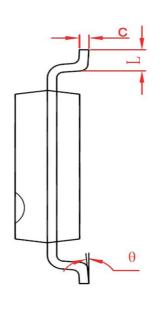
偏置电容是最关键的电容,它与几个重要性能相关, 当电路启动时,偏置电容决定了放大器的开启速度, 偏置电容同时会影响到电路的噪声和电源抑制比以及 开关机的POP声。

为避免启动时的POP声,偏置电压的上升速度应该比输入偏置电压的上升速度慢。

过温保护

PF8002D带有过温保护电路以防止内部温度超过 175℃时器件损坏。在不同器件之间,这个值有25℃ 的差异。当内部电路超过设置的保护温度时,器件进入关断状态,输出被截止。当温度下降 30℃后,器件重新正常


工作。


关断工作模式

为了减少在关断模式下的功率损耗,PF8002D带有关闭放大器偏置的关断电路。当SD引脚为低电平时,放大器 正常工作。当SD引脚为高电平时,放大器被关闭,工作电流达到最小;SD引脚默认高电平。

封装图 (SOP8)

<i>የነ</i> ተ ፡ ፡ ፡	毫米(mm)	英寸(Inch)		
符号	最小值	最大值	最小值	最大值	
Α	1.350	1.750	0.053	0.069	
A1	0.100	0.250	0.004	0.010	
A2	1.350	1.550	1.550	0.061	
b	0.330	0.510	0.013	0.020	
С	0.170	0.250	0.006	0.010	
D	4.700	5.100	0.185	0.200	
E	3.800	4.000	0.150	0.157	
E1	5.800	6.200	0.228	0.244	
е	1.27(BSC)		0.050(BSC)		
L	0.400	1.270	0.016	0.050	