

特性

◆ 输出功率

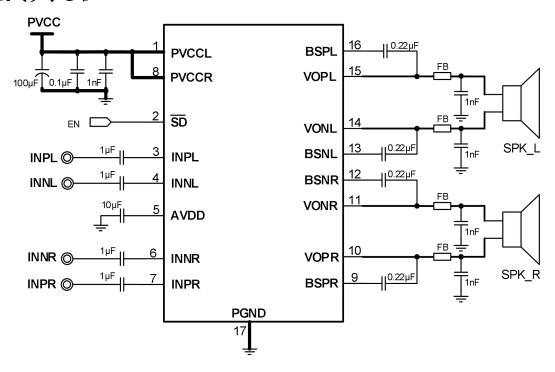
BTL: $2\times40W$ (8 Ω , 24V, THD+N=10%) PBTL: 80W (4 Ω , 24V, THD+N=10%)

- ◆ PVCCL/R 支持宽电压供电, 范围 5.5V 26V
- ◆ 20mA@24V 静态电流
- ◆ 效率高达 93%
- ◆ 优异的上、下电 pop-click 噪声抑制
- ◆ 抖频设计超低 EMI
- ◆ 内置过热保护, 短路保护, 过压保护, 欠压 保护功能
- ◆ 无铅无卤封装, ESOP16

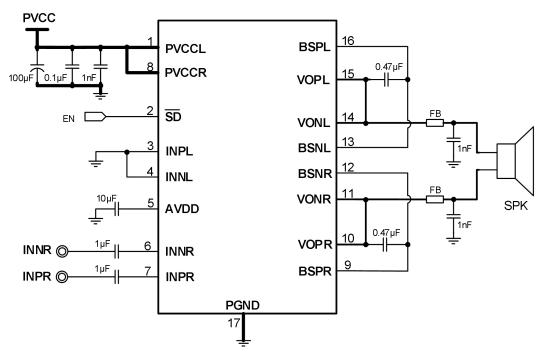
应用

- ◆ 大功率蓝牙音箱
- ◆ AI 音箱
- ◆ 2.1 声道音箱
- ◆ LCD 电视

概述


PF8118S 是一款高集成度、高效率的双通道 D 类音频功率放大器。支持 BTL 和 PBTL 模式输出,供电电压范围 5.5V-26V。双通道 BTL 模式下输出功率可以到 2×40W(8Ω, 24V, THD+N=10%),单通道 PBTL 模式下可以输出 80W(4Ω, 24V, THD+N=10%)。 PF8118S 采用新型 PWM 脉宽调制架构,降低静态功耗,提高效率, PWM 采用扩频技术,大幅降低了 EMI 辐射,在功率和喇叭线长一定的范围内,可以用磁珠替代电感方案,从而优化成本和电路面积。

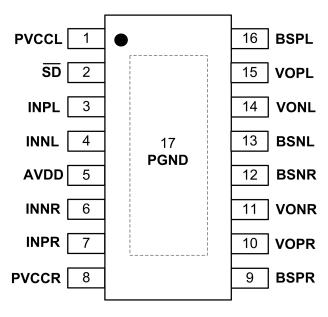
PF8118S内置过热保护, 短路保护, 过压保护, 欠压保护, 防止芯片在非正常工作条件下损坏。



典型应用电路

双通道模式参考电路

单通道模式参考电路



注意: 1. 芯片底部是 PGND 管脚, 一定要接地。

2. SD 脚高电平时芯片工作,该管脚高电平电压范围是 2.0V - 5.5V。

引脚定义

ESOP16 (Top View)

引脚功能描述

序号	符号	I/O/P/A	描述
1	PVCCL	Р	左通道功率电源
2	SD	I	芯片关断管脚,低电平有效
3	INPL	I	左通道音频正端输入
4	INNL	l	左通道音频负端输入
5	AVDD	0	内置 5V LDO 输出
6	INNR	I	右通道音频负端输入
7	INPR	I	右通道音频正端输入
8	PVCCR	Р	右通道功率电源
9	BSPR	Р	右通道正端自举
10	VOPR	0	右通道正端输出
11	VONR	0	右通道负端输出
12	BSNR	Р	右通道负端自举
13	BSNL	Р	左通道负端自举
14	VONL	0	左通道负端输出
15	VOPL	0	左通道正端输出
16	BSPL	Р	左通道正端自举
17	PGND	Р	功率地

极限参数

参	范	围	单位	说明	
"	最小值	最大值	平位		
电源电压	PVCC	-0.3	30	V	
输入电压	SD	-0.3	6.0	V	
环境工作温度	T _A	-40	85	°C	
储存温度 T _{stg}		-40	125	°C	
耐 ESD 电压(人体模型)		2000		V	НВМ
焊接温度		260	°C	15 秒内	

注: 在极限值之外或任何其他条件下, 芯片的工作性能不予保证。

推荐应用参数

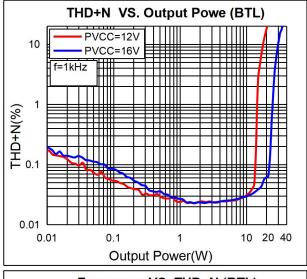
参	范围		单位	说明	
*	最小值	最大值	平位	PC-31	
电源电压	PVCC	5.5	26	V	
输入电压	SD	0	5.5	٧	
	BTL 模式	4		Ω	5.5V ≤ PVCC ≤ 16V
D		8		Ω	5.5V ≤ PVCC ≤ 26V
R _{SPK_MIN} 最小负载阻抗	PBTL 模式	2		Ω	5.5V ≤ PVCC ≤ 12V
		4		Ω	5.5V ≤ PVCC ≤ 26V

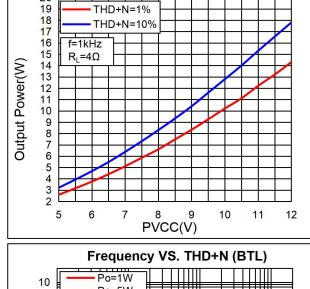
电气特性

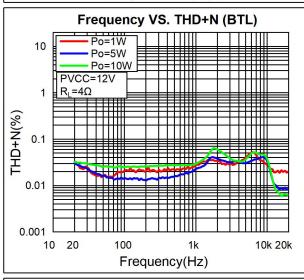
限定条件: (PVCC=12V to 24V, $T_A=25^{\circ}$ C, $R_L=8\Omega$, f=1kHz, 除非特别说明)

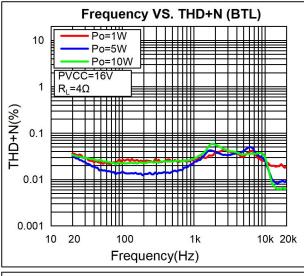
参数	符号	条件		最小值	典型值	最大值	单位	
直流参数								
PVCC 电源电压	PVCC			5.5		26	V	
PVCC Power down 电流	I _{SD}	V _{SD} =0			0.1	5	μΑ	
PVCC 静态工作电流	lα	V _{SD} =1	PVCC=24V		20		mA	
			PVCC=16V		16		mA	
			PVCC=12V		12		mA	
漏源导通电阻	R _{DS(on)}	PVCC=12V, I _O =500mA			110		mΩ	
增益	Gain			25	26	27	dB	

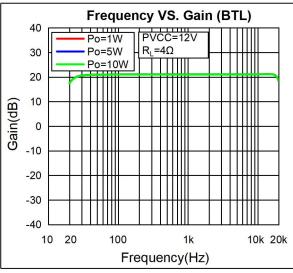
限定条件: (PVCC=12V to 24V, T_A =25°C, R_L =8 Ω , f=1kHz, 除非特别说明)

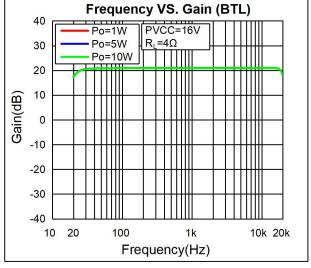

参数	符号	条件	最小值	典型值	最大值	单位
AVDD 输出电压	VLDO	Vs̄̄̄̄̄=1		5.2		V
输出失调电压	Vos	V _{SD} =1		1.5	10	mV
振荡器频率	Fosc	V _{SD} =1	270	330	390	kHz
效率	η	P _{OUT} =8W,12V,8Ω		93		%
SD 高电平	V _{SD} _H	PVCC=5.5V to 26V	2		5.5	V
SD 低电平	V _{SD} _L	PVCC=5.5V to 26V	0		0.4	V
交流参数	-	,	•		,	
		PVCC=24V,8Ω@		00		10/
		1kHz,THD=1%		33		W
		PVCC=24V,8Ω@		40		W
♪ ハット あ / DTI ↓ は よ \		1kHz,THD=10%		40		
输出功率(BTL 模式)	P _{O (BTL)}	PVCC=16V,4Ω@		0.5		
		1kHz,THD=1%		25		W
		PVCC=16V,4Ω@				10/
		1kHz,THD=10%		30		W
谐波失真加噪声	THD+N	PVCC=12V,Po=8W,@		0.1		%
省 波大县加禾户	I HUTIN	1kHz		0.1		70
空闲通道输出噪声	V _N	PVCC=12V, GAIN=20dB		110		μV
信噪比	SNR	A 加权,GAIN=20dB		100		dB
电源电压抑制比	PSRR	f=1kHz		72		dB
通道隔离度				100		dB
		PVCC=24V,4Ω@		0.5		10/
		1kHz,THD=1%		65		W
		PVCC=24V,4Ω@		00		10/
输出功率(PBTL 模式)	D	1kHz,THD=10%		80		W
制 II 切牛(PDIL 侯 I)	P _{O (PBTL)}	PVCC=12V,4Ω@		17		W
		1kHz,THD=1%				
		PVCC=12V,4Ω@		20		W
		1kHz,THD=10%		20		
保护						
过热保护阈值	OTP			160		°C
过热保护滞回				20		°C

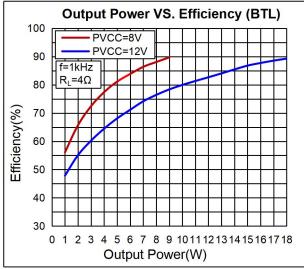

PVCC VS. Output Power (BTL)

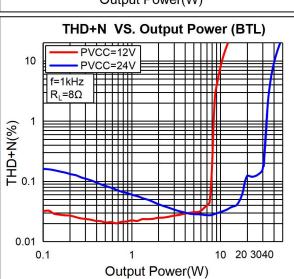

20



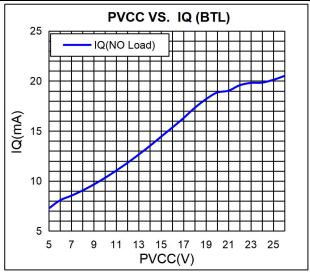

典型特性曲线

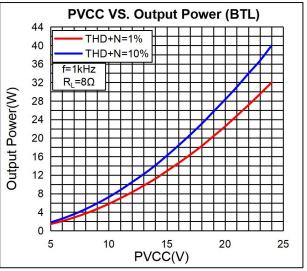


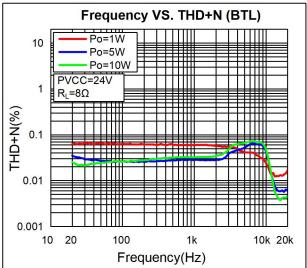


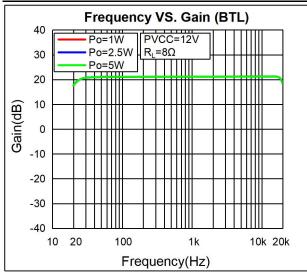


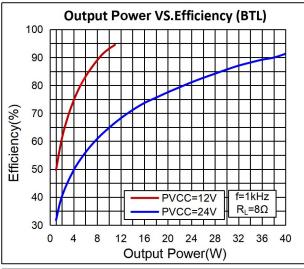


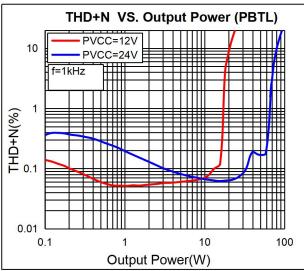


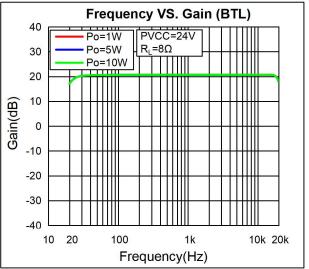


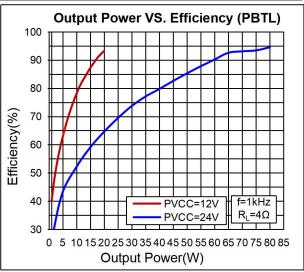


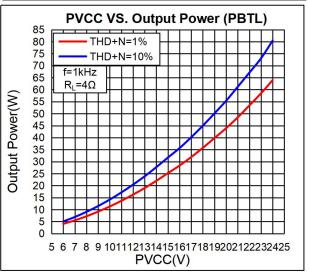


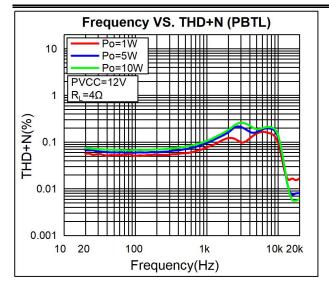


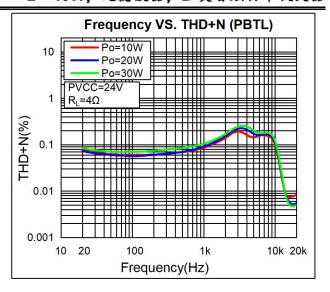












功能介绍

待机模式

 \overline{SD} 引脚是 PF8118S 使能控制管脚,在运放正常工作时应该是高电位, \overline{SD} 置低电位时 PF8118S 进入待机模式。不能让 \overline{SD} 悬空不连接,因为这样将使得运放出现不可预知状态。为了实现最佳的关断性能,在关断电源之前将运放置于待机模式。 \overline{SD} 引脚低电位电压应该小于 0.4V,高电位电压建议 $2.0V\sim 5.5V$ 。

BTL 模式与 PBTL 模式

PF8118S 支持 BTL 模式和 PBTL 模式输出,不需单独的控制管脚来选择 BTL 双声道输出模式和 PBTL 单声道输出,通过外围电路自动开启 BTL 或 PBTL 模式输出。BTL 与 PBTL 输出的电路具体电路见下文中"典型应用电路"。

短路保护和自动恢复

PF8118S 内置了输出短路保护电路,当输出端发生短路时,PF8118 立即关闭输出,当输出端短路故障排除后 PF8118S 可自动恢复输出。

过热保护

PF8118S 的过热保护是防止芯片温升过高超过 160℃时造成芯片损坏的保护。PF8118S 在过热保护温度点有±10℃的上下容许范围。一旦温度超过设定的温度点,芯片进入关闭状态,无输出,当温度下降 20℃ 后过热保护就会消除,芯片正常工作。

过压保护

PF8118S 内置了过压保护电路, 当 PVCC 供电电压高于 25V 的过压保护点后, 芯片进入关闭状态, 无输出, 过压保护解除后, 芯片正常工作。

应用说明

输入电容 Cin

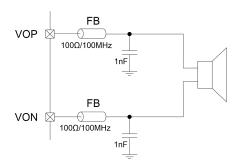
PF8118S的内部输入电阻 Rin 和外部输入电容 Cin 之间构成了一个高通滤波器, 其截止频率计算公式如下:

$$f_c = \frac{1}{2\pi RinCin}$$

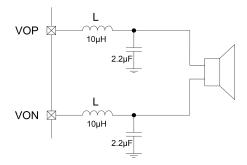
输入电容值的选择非常重要,一般认为它直接影响着电路的低频特性,但并不是电容值越大越好。电容之间良好的匹配对提升芯片的整体性能和 Pop&Click 的抑制都有帮助,因此要求选取精度为 10%或更高精度的电容。

单端与差分输入方式

PF8118S 的模拟输入是标准的差分输入接口。在系统设计中,推荐使用差分输入方式来接驳主芯片的音频输出。使用差分输入方式可以更好地的抑制 POP 声,同时增强信号的抗干扰能力。差分输入方式和单端输入方式的对比如下表:

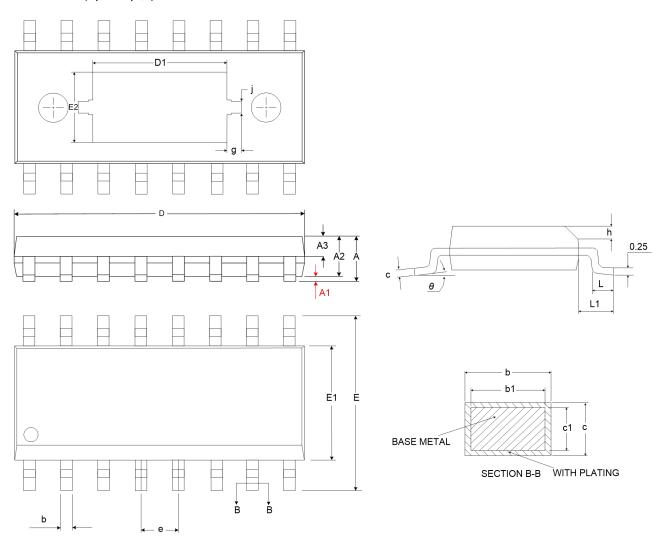

	差分输入方式	单端输入方式		
长曜志工状化力	差分输入有较强的共模噪声抑	无抑制功能,需要在 PCB 走线		
抗噪声干扰能力 	制能力	布局方面多加注意		
	そ八仏)仏北仏川川コフ目小	单端输入需仔细设计输入网络		
开启/关闭时 POP 声性能	差分输入的对称性保证了最优	及控制电路, 避免输入不平衡		
	的开关机 POP 声性能	引起的 POP 声		

在实际应用中,由于多数主控芯片的音频模拟输出是单端模式,PF8118S的差分输入必须配置为单端接法才能使用。使用单端输入模式时需注意:单端输入模式应用时需要更加注意音频信号的走线和地线的分布,因为单端输入模式没有能力抑制系统中的共模干扰信号;单端输入模式必须注意 P/N 脚电路网络的阻抗匹配,尽量不要在输入级使用复杂的滤波网络。不合适的阻抗匹配网络可能会引起开关机的 POP 声。



输出滤波器

PF8118S 在 EMI 要求不高的应用时,可以在输出端直接连喇叭或在输出端脚磁珠滤波器,如下图示:


如果 PF8118S 应用于 EMI 要求比较高的系统中,可以在输出端串接 LC 滤波器的方式,如下图示:

封装尺寸图

ESOP16 封装尺寸图

SYMBOL	MILLIMETER			SYMBOL	MILLIMETER			
	MIN	NOM	MAX	STWIDOL	MIN	NOM	MAX	
А	_	_	1.75	E1	3.70	3.90	4.10	
A1	0.05	0.1	0.15	е	1.27BSC			
A2	1.30	1.40	1.50	E2	_	2.41	_	
A3	0.60	0.65	0.70	D1	_	4.57	_	
b	0.39	_	0.48	g	_	0.508	_	
b1	0.38	0.41	0.43	j	_	0.40	_	
С	0.21	_	0.26	h	0.25	_	0.50	
c1	0.19	0.20	0.21	L	0.50	_	0.80	
D	9.70	9.90	10.10	L1	1.05BSC			
Е	5.80	6.00	6.20	θ	0	_	8°	